Gymnurahemecus bulbosus gen. et sp. nov. (Digenea: Aporocotylidae) infecting smooth butterfly rays, *Gymnura micrura* (Myliobatiformes: Gymnuridae) in the northern Gulf of Mexico, with a taxonomic key and further evidence for monophyly of chondrichthyan blood flukes

Micah B. Warren¹ • Carlos F. Ruiz¹ • Nathan V. Whelan² • Delane C. Kritsky³ • Stephen A. Bullard¹

Received: 13 July 2018 / Accepted: 28 December 2018 / Published online: 14 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Gymnurahemecus bulbosus gen. et sp. nov. infects the heart of smooth butterfly rays, *Gymnura micrura* in the Gulf of Mexico. *Gymnurahemecus* differs from all other accepted aporocotylid genera by having one column of C-shaped lateral tegumental spines, a medial oesophageal bulb anterior to a diverticulate region of the oesophagus, inverse U-shaped intestinal caeca, a non-looped testis, an oviducal ampulla, a Laurer’s canal, and a post-caecal common genital pore. The new species, the shark blood flukes (*Selachohemecus* spp. and *Hyperandrotrema* spp.), and the chimaera blood fluke *Chimaerohemecus trondheimensis* are unique by having C-shaped lateral tegumental spines. *Selachohemecus* spp. and the new species have a single column of lateral tegumental spines, whereas *Hyperandrotrema* spp. and *C. trondheimensis* have 2–7 columns of lateral tegumental spines. The new species differs from *Selachohemecus* spp. most notably by having an inverse U-shaped intestine. The other ray blood flukes (*Orchispirium heterovitellatum*, *Myliobaticola richardheardi*, and *Ogawaia glaucostegi*) differ from the new species by lacking lateral tegumental spines, a medial oesophageal bulb, and a Laurer’s canal and by having a looped testis. Phylogenetic analysis using large subunit ribosomal DNA (28S) indicated that the new species is sister to the clade that includes the other sequenced adult blood fluke (*O. glaucostegi*), which infects a ray in Australia. These results agree with and extend previous morphology- and nucleotide-based phylogenetic assertions that the blood flukes of early-branching jawed craniates (Chondrichthyes) are monophyletic and phylogenetically separated from the blood flukes of later-branching ray-finned fishes (Actinopterygii: Euteleostei).

Keywords Blood fluke · New genus · Chondrichthyes · Taxonomy · Phylogeny

Introduction

The fish blood flukes (Digenea: Aporocotylidae Odhner, 1912; see Bullard et al. 2009) that infect sharks, skates, and rays (Chondrichthyes: Elasmobranchii) plus chimaeras (Chondrichthyes: Holocephali) presently comprise eight nominal species assigned to six genera: *Selachohemecus olsoni* Short, 1954 from the Atlantic sharpnose shark, *Rhizoprionodon terraenovae* (Richardson) (Short 1954; Bullard et al. 2006); *Selachohemecus benzi* Bullard et al., 2006 from the blacktip shark, *Carcharhinus limbatus* (Valenciennes) (Bullard et al. 2006); *Chimaerohemecus trondheimensis* van der Land, 1967 from rabbit fish, *Chimaera monstrosa* Linnaeus and spookfish, *Hydrolagus mitsukurii* Jordan and Snyder (van der Land 1967; Kamegai et al. 2002); *Orchispirium heterovitellatum* Madhavi and Rao, 1970 from the Bengal whipray, *Brevitrygon imbricata* (Bloch and Schneider) (Madhavi and Hanumantha Rao 1970; Bullard and Jensen 2008); *Myliobaticola richardheardi* Bullard and Jensen, 2008 from the Atlantic stingray, *Hypanus sabinus*

1 School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
2 Warm Springs Fish Technology Center, US Fish and Wildlife Service, Auburn, AL 36849, USA
3 Health Education Program, School of Health Professions, Idaho State University, Pocatello, ID 83209, USA
(Lesueur) (Bullard and Jensen 2008); Hyperandrotrema cetorhini Malliard and Ktari, 1978 from the basking shark, Cetorhinus maximus (Gunnerus) (Malliard and Ktari 1978; Orélis-Ribeiro et al. 2013); Hyperandrotrema walterboegeri Orélis-Ribeiro et al., 2013 from shortfin mako shark, Isurus oxyrinchus Rafinesque (Orélis-Ribeiro et al. 2013); and Ogawaia glaucostegi Cutmore et al., 2018 from the giant shovelnose ray, Glaucestegus typus (Anonymous [Bennett]) (Cutmore et al. 2018). They collectively infect the heart, kidney, mesenteric blood vessels, and gill epithelium of four sharks and three rays in the northwestern Atlantic Ocean (Gulf of Mexico) (Short 1954; Bullard et al. 2006; Bullard and Jensen 2008; Orélis-Ribeiro et al. 2013) and Indian Ocean (Madhavi and Hanumantha Rao 1970; Maillard and Ktari 1978). The single blood fluke named from chimaeras has been reported from off Norway (van der Land 1967) and Japan (Kamegai et al. 2002), but another congener may exist off Greenland (Karlsbakk et al. 2002). A new species of blood fluke infecting the heart of smalltooth sawfish, Pristis pectinata Latham in the eastern Gulf of Mexico off Florida, USA, is being described by us (MBW and SAB) and will comprise the ninth named blood fluke infecting a chondrichthyan. Compared to the taxonomic diversity of blood flukes reported from ray-finned fishes (Actinopterygii), those infecting early-branching fish lineages, especially chondrichthyans, remain vastly underexplored.

Herein, we propose a new genus and describe a new species of blood fluke from the heart of smooth butterfly rays, Gymnura micrura (Bloch and Schneider), (Myliobatiformes: Gymnuridae) captured in the northern Gulf of Mexico. This is the fourth species described and fourth genus proposed for a blood fluke infecting a ray.

Materials and methods

A total of 74 smooth butterfly rays were captured using a 10-m otter trawl during summer 2016 (n = 54) and 2017 (n = 20) from the mouth of Mobile Bay (30°13′22.61″N, 88°3′18.57″W) (northern Gulf of Mexico). Each smooth butterfly ray was identified using the dichotomous key of McEachran and de Carvalho (2002) and by having a tail without serrated spines and no tentacle on the posterior margin of the spiracle. Live smooth butterfly rays were removed from the trawl and placed in a flow-through seawater tank prior to necropsy. At necropsy, each smooth butterfly ray was killed by pithing before the heart and all gill arches were excised intact, placed in separate sample bags (heart was bisected; gill arches separated), exposed to 60 °C freshwater, shaken vigorously, and preserved in 5–10% neutral buffered formalin. Gill arches, gill filaments, and corresponding sediment from the sample bags were examined using a stereo-dissecting microscope for the presence of adults and eggs of the new species. Several gill filaments from each set of gill arches were excised, wet-mounted on a glass slide, and examined with the aforementioned compound microscopes to detect blood fluke eggs in the branchial arterioles and gill epithelium (observations of eggs will be reported elsewhere). Twenty live smooth butterfly rays captured in 2017 were pithed, placed on ice, and examined for the purposes of extracting blood flukes for DNA extraction: one adult blood fluke was isolated from the heart of two smooth butterfly rays, wet-mounted on a glass slide to confirm their identity, placed directly into 95% EtOH, and stored at −20 °C until DNA was extracted (see below). All bagged, formalin-fixed tissues were examined with the aid of a stereo-dissecting microscope and fiber optic light source to isolate blood flukes for morphology. The heart was teased apart with fine forceps to reveal adult blood flukes, and sediment from each sample bag was examined for blood flukes with aid of a settling column.

Specimens for morphology were rinsed with distilled water, cleaned with fine brushes to remove any debris, stained overnight in Van Cleave’s hematoxylin with several additional drops of Ehrlich’s hematoxylin, dehydrated using an ethanol series, cleared in clove oil, permanently mounted in Canada balsam, illustrated using Leica DM 2500 and Leica DMR microscopes each equipped with differential interference contrast (DIC) optical components, measured using an ocular micrometer, and illustrated using a drawing tube. Blood fluke measurements are reported in micrometers (μm) as the range followed by the mean, ± standard deviation, and sample size in parentheses. Scientific names, including taxonomic authorities and dates for fishes, follow Eschmeyer et al. (2016). Morphological terms and nomenclature for blood flukes follows Bullard et al. (2006, 2009), Bullard and Jensen (2008) and Orélis-Ribeiro et al. (2013). Type and voucher materials are deposited in the National Museum of Natural History’s Invertebrate Zoology Collection (USNM, Smithsonian Institution, Washington, D.C.) and the Auburn University Museum of Natural History (AUMNH, Auburn, AL).

Using the two EtOH-preserved and microscopically identified blood flukes, total genomic DNA (gDNA) was extracted using DNeasyTM Blood and Tissue Kit (Qiagen, Valencia, CA, USA) as per the manufacturer’s protocol with one exception: the proteinase-K incubation period was extended overnight and the final elution step used 100 μL of elution buffer to increase the final DNA concentration. Amplification and sequencing of the large subunit ribosomal DNA (28S) used the set of primers described in Orélis-Ribeiro et al. (2017). PCR amplifications were performed according to Warren et al. (2017) with one exception: the annealing temperature was 61 °C for 30 s. DNA sequencing was performed by ACGT, Incorporated (Wheeling, IL, USA). Sequence assembly and analysis of chromatograms were performed with Geneious version 11.0.5 (http://www.geneious.com; Kearse et al. 2012). All nucleotide sequence data were deposited in GenBank (Table 1).
The phylogenetic analysis included two sequences of the new species plus the taxa included in Cribb et al. (2017) (Table 1). The outgroup comprised the three turtle blood fluke taxa *Haplodranchys gracilis* Stunkard, 1922, *Spirochisch artericola* (Ward, 1921), and *Vasotrema robustum* Stunkard, 1928. Sequences were aligned using MAFFT (Katoh and Standley 2013). JModelTest 2 version 2.1.10 was implemented to perform statistical selection of the best-fit models of nucleotide substitution based on Bayesian information criteria (BIC) (Darriba et al. 2012). Aligned sequences were reformatted (from .fsta to .nexus) using the web application ALTER (Glez-Peña et al. 2010) to run Bayesian inference (BI). BI was performed in MrBayes version 3.2.5 (Ronquist and Huelsenbeck 2003) using substitution model averaging (“nst-mixed”) and a gamma distribution to model rate-heterogeneity. Defaults were used in all other parameters. Three independent runs with four Metropolis-coupled chains were run for 5,000,000 generations, sampling the posterior distribution every 1000 generations. Convergence was checked using Tracer v1.6.1 (Rambaut et al. 2014) and the “sump” command in MrBayes: all runs appeared to reach convergence after discarding the first 25% of generation as burn-in. A majority rule consensus tree of the post burn-in posterior distribution was generated with the “sum” command in MrBayes. The inferred phylogenetic tree was visualized using FigTree and edited for visualization purposes with Adobe Illustrator (Adobe Systems).

Results

Gymnurahemecus gen. nov. (Figs. 1–5, 6–8, and 9–10)

Diagnosis: Body 6–10× longer than wide, dorsoventrally flattened, ventrally concave, having anterior and posterior ends tapering equally, spinous; lateral tegumental spines C-shaped, directed ventrally, each on a muscular peduncle, distributing in a single ventrolateral column, not continuous anteriorly nor posteriorly. Rosethorn-shaped spines lacking. Nervous system comprising paired lateral nerve cords. Anterior sucker aspinous, lacking peduncle, diminutive, occupying space between anterior-most lateral tegumental spines. Mouth on mid-ventral surface of anterior sucker. Pharynx not evident. Oesophagus extending sinuously posteriorly along mid-line for 1/4–1/3 of body length, with midpoint portion having an oesophageal bulb; oesophageal bulb delimited anteriorly and posteriorly by marked constrictions. Intestinal caeca inverse U-shaped, connecting to oesophagus ventrally, lacking diverticulae, terminating in anterior half of body. Testis single, medial, occupying middle 1/3 of body. Auxiliary external seminal vesicle lacking. Cirrus sac present, enveloping internal seminal vesicle and cirrus. Ovary sinistral, post-caecal, post-testicular; post-ovarian space comprising 1/3 of body length. Oviducal ampulla present. Laurer’s canal present, opening on dorsal surface. Oötype medial, posterior to genitalia, comprising an inconspicuous ovoid chamber. Uterus post-gonadal, not extensively convoluted, extending anteriorly from oötype before crossing mid-line and extending posteriorly; uterine eggs spheroid, thin-shelled. Vitellarium follicular, asymmetrical posteriorly, filling space between nerve commissure to ovary; common vitelline collecting duct extending from dextral branch of vitellarium. Common genital pore dorsal, post-gonadal, anterior to level of oötype. Excretory vesicle small, medial, visible in posterior most region of specimen body.

Taxonomic summary

Type and only nominal species: Gymnurahemecus bulbosus sp. nov.

Etymology: *Gymnurahemecus* refers to the type species infecting the blood of a gymnurid.

Gymnurahemecus bulbosus sp. nov. (Figs. 1–5, 6–8, and 9–10)

Diagnosis of adult specimens (based on 10 whole-mounted specimens and 2 SEM prepared specimens): Body 830–1130 (986 ± 101, 9) long, 88–155 (135 ± 22, 9) at greatest width, 6–10× longer than wide (Figs. 1–3). Lateral tegumental spines 83–97 (91 ± 4, 8) per side of body or a total of 168–193 (183 ± 7.4, 8), ending 13–25 (19 ± 4.2, 8) or 1–3% (2 ± 0.05, 8) of body length from posterior end of body, base slightly bifurcate at posterior margin, tissue not associated with base on anterior-most lateral tegumental spines (Fig. 4), approximately equal in size throughout length of body; lateral tegumental spines in anterior region 5–8 (6.2 ± 1.2, 9) long, 1–2 (1.6 ± 0.5, 9) wide; lateral tegumental spines in mid-body and posterior region 4–8 (5 ± 1.3, 9) long, 1–2 (1.2 ± 0.4, 9) wide (Fig. 5); peduncles supporting lateral tegumental spines approximately equal in size throughout length of body; peduncles in anterior region of body 5–8 (7.1 ± 1.1, 9) long, 3–5 (3.9 ± 0.8, 9) wide; peduncles in mid-body and posterior region of body 5–7 (6 ± 0.5, 9) long, 2–6 (3 ± 0.8) wide. Ventrolateral nerve cord 760–970 (851 ± 107, 3) long, 8–10 (9 ± 1.3) wide near mid-body at widest level, 13–18 (15 ± 2.5, 3) from body margin. Primary commissure perpendicular to mid-line of body, connecting ventrolateral nerve-cords, 78–125 (109 ± 19, 5) or 6–14% (11% ± 0.2, 5) of body width from anterior end of body, 20–30 (25 ± 5, 5) across width of worm, 8–10 (9.2 ± 1.1, 5) in breadth; (Figs. 1–3, 6, 7); secondary commissure and nerve cords not evident in wholemounts.
Table 1 DNA sequences used in the present study

<table>
<thead>
<tr>
<th>Blood fluke</th>
<th>Host</th>
<th>Locality</th>
<th>GenBank 28S Accession #</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aporocotylid cercaria W5003</td>
<td>Plotiopsis balonnensis (Conrad)</td>
<td>Victoria River, Northern Territory, Australia</td>
<td>AY858878</td>
<td>Brant et al. 2006</td>
</tr>
<tr>
<td>Aporocotylid cercaria W5004</td>
<td>Gytophthysa gibbosa (Gould)</td>
<td>Mary River, Northern Territory, Australia</td>
<td>AY858879</td>
<td>Brant et al. 2006</td>
</tr>
<tr>
<td>Aporocotylid cercaria NSW1</td>
<td>Plebidonax deltoides (Lamarck)</td>
<td>Stockton beach, New South Wales, Australia</td>
<td>MF503307</td>
<td>Cribb et al. 2017</td>
</tr>
<tr>
<td>Aporocotyle spinosicanalis Williams, 1958</td>
<td>Lutjanus argintimaculatus (Forskål)</td>
<td>Off Lizard Island, Australia</td>
<td>X523188</td>
<td>Yong et al. 2016b</td>
</tr>
<tr>
<td>Cardicola beveridgei Yong et al., 2016b</td>
<td>Scopemoromorus munroi Collette and Russo</td>
<td>Moreton Bay, Queensland, Australia</td>
<td>KX523190</td>
<td>Yong et al. 2016b</td>
</tr>
<tr>
<td>Cardicola forsteri Shirakashi et al., 2016</td>
<td>Thunnus orientalis (Temminck and Schlegel)</td>
<td>Off Wakayama Prefecture, Japan</td>
<td>KT119353</td>
<td>Shirakashi et al. 2016</td>
</tr>
<tr>
<td>Cardicola opisthorchis Ogawa et al., 2011</td>
<td>Chanos chanos (Forsskål)</td>
<td>Off Wakayama Prefecture, Japan</td>
<td>HQ324227</td>
<td>Ogawa et al. 2011</td>
</tr>
<tr>
<td>Cardicola suni Yong et al., 2016b</td>
<td>Chimaera monstrosa (Forster)</td>
<td>Off Wakayama Prefecture, Japan</td>
<td>KX463511</td>
<td>Yong et al. 2016b</td>
</tr>
<tr>
<td>Chimaeohemecus trondheimensis van der Land, 1927</td>
<td>Chimaera monstrosa Linnaeus</td>
<td>NE Atlantic, off Bergen, Norway</td>
<td>AY157239</td>
<td>Lockyer et al. 2003b</td>
</tr>
<tr>
<td>Elopica nolanciripi Bullard, 2014</td>
<td>Elops saurus Linnaeus</td>
<td>Gulf of Mexico, off Ship Island, MS</td>
<td>KY243880</td>
<td>Orélis-Ribeiro et al. 2017</td>
</tr>
<tr>
<td>Elopica franksi Orélis-Ribeiro et al., 2017</td>
<td>Megalops atlanticus Valenciennes</td>
<td>Gulf of Mexico, off FL</td>
<td>KY243882</td>
<td>Orélis-Ribeiro et al. 2017</td>
</tr>
<tr>
<td>Gymnurahemecus bulbosus gen. et sp. nov.</td>
<td>Gymnura mircura (Bloch and Schneider)</td>
<td>Gulf of Mexico, mouth of Mobile Bay, AL</td>
<td>MH555432</td>
<td>Present study</td>
</tr>
<tr>
<td>Gymnurahemecus bulbosus gen. et sp. nov.</td>
<td>Gymnura mircura (Bloch and Schneider)</td>
<td>Gulf of Mexico, mouth of Mobile Bay, AL</td>
<td>MH555433</td>
<td>Present study</td>
</tr>
<tr>
<td>Neoparacardicola nasonis Yamaguti, 1970</td>
<td>Naso unicorns (Forskål)</td>
<td>Off Lizard Island, Australia</td>
<td>AY222179</td>
<td>Olson et al. 2003</td>
</tr>
<tr>
<td>Ogawaia glucostegi Cутmore et al., 2018</td>
<td>Glaucostegus typus (Anonymous [Bennett])</td>
<td>Moreton Bay, Queensland, Australia</td>
<td>MF503308</td>
<td>Cribb et al. 2017</td>
</tr>
<tr>
<td>Paraectocontlyx buri Ogawa et al., 2015</td>
<td>Seriola quinquemariata (Anonymous)</td>
<td>Off Miyazaki Prefecture, Japan</td>
<td>AB904154</td>
<td>Ogawa et al. 2015</td>
</tr>
<tr>
<td>Paraectocontlyx grandispinus Repullés-Albelda et al., 2008</td>
<td>Seriola dumerili (Risso)</td>
<td>Off Kagoshima Prefecture, Japan</td>
<td>AM489596</td>
<td>Repullés-Albelda et al. 2008</td>
</tr>
<tr>
<td>Paraectocontlyx ibericus Repullés-Albelda et al., 2008</td>
<td>Seriola dumerili (Risso)</td>
<td>Off Murcia, Spain</td>
<td>AM489593</td>
<td>Repullés-Albelda et al. 2008</td>
</tr>
<tr>
<td>Plethorchis acanthus Martin, 1975</td>
<td>Mugil cephalus Linnaeus</td>
<td>Brisbane River, Queensland, Australia</td>
<td>AY222178</td>
<td>Olson et al. 2003</td>
</tr>
<tr>
<td>Psettarium jimbaranense Yong et al., 2016a</td>
<td>Arothron reticularis (Bloch and Schneider)</td>
<td>Off Bali, Indonesia</td>
<td>XK824693</td>
<td>Yong et al. 2016a</td>
</tr>
<tr>
<td>Psettarium nolani (Bray et al. 2012) Yong et al., 2016</td>
<td>Arothron meleagris (Anonymous)</td>
<td>Off Moorea, French Polynesia</td>
<td>AY157174</td>
<td>Lockyer et al. 2003a</td>
</tr>
<tr>
<td>Psettarium sinense (Liu, 1977) Orélis-Ribeiro et al., 2014</td>
<td>Takifugu rubripes (Temminck and Schlegel)</td>
<td>Fuzhou, China</td>
<td>EU368853</td>
<td></td>
</tr>
<tr>
<td>Sanguinicola cf. inermis Plehn, 1905</td>
<td>Lynnaea stagnalis (Linnaeus)</td>
<td>Warminia-Mazury Region, Poland</td>
<td>AY222180</td>
<td>Olson et al. 2003</td>
</tr>
<tr>
<td>Skoulektia meningialis Alama-Bermejo et al., 2011</td>
<td>Diplogus vulgaris (Geoffroy St. Hilaire)</td>
<td>Off Valencia, Spain</td>
<td>FN652293</td>
<td>Alama-Bermejo et al. 2011</td>
</tr>
</tbody>
</table>
Mouth 2–3 (2.4 ± 0.5, 7) in diameter, 6–9 (7 ± 1, 7) from terminal end of anterior sucker (Figs. 1–3). Oesophagus 238–325 (288 ± 31, 7) in total length or 25–35% (29% ± 0.03, 7) of body length, 13–30 (24 ± 4, 7) in maximum width (at level of oesophageal bulb), ventral to primary nerve-commissure, comprising several distinct segments (anterior portion, pre-oesophageal bulb dilation, medial oesophageal bulb, diverticulate portion, and pre-caecal dilation); anterior portion a narrow duct extending directly or slightly sinuously posteriad, 105–145 (128 ± 13, 7) long or 41–48% (44% ± 0.02, 7) of oesophagus length, 1–3 (2.5 ± 0.75, 8) wide or 1–2% (1.8% ± 0.003, 8) of body width; medial oesophageal bulb

Table 1 (continued)

<table>
<thead>
<tr>
<th>Blood fluke</th>
<th>Host</th>
<th>Locality</th>
<th>GenBank 28S Accession #</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turtle blood flukes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hapalorhynchus gracilis</td>
<td>Chelydra serpentina (Linnaeus)</td>
<td>Reelfoot Lake, TN</td>
<td>AY604710</td>
<td>Snyder 2004</td>
</tr>
<tr>
<td>Stunkard, 1922</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirochis artericola</td>
<td>Chrysemys picta (Schneider)</td>
<td>Reelfoot Lake, TN</td>
<td>AY604704</td>
<td>Snyder 2004</td>
</tr>
<tr>
<td>(Ward, 1921)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasotrema robustum</td>
<td>Apalone spinifera (LeSueur)</td>
<td>Nishnabotna River, IA</td>
<td>AY604706</td>
<td>Snyder 2004</td>
</tr>
<tr>
<td>Stunkard, 1928</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figs. 1–5 *Gymnurahemecus bulbosus* Warren and Bullard gen. et sp. nov. (Digenea: Aporocotylidae) from the heart of the smooth butterfly ray, *Gymnura micrura* (Bloch and Schneider) (Myliobatiformes: Gymnuridae). (1) Body of holotype, ventral view. (2) Body of paratype 1, dorsal view. (3) Body of paratype 2, ventral view. Mouth (mo), oesophagus (os), nerve commissure (nc), oesophageal bulb (ob), vitellarium (vit), caecal bifurcation (cb), testis (t), vasa efferentia (ve), ovary (o), common genital pore (cgp), oötype (oo), and excretory vesicle (ev). Bars = 150 μm. (4) Anterior-most ventrolateral tegumental spines and supporting peduncles. Dorsal view. (5) Mid-body ventrolateral tegumental spines and supporting peduncles. Black shading indicates exposed portion of lateral tegumental spine. Bar = 4 μm.
a markedly laterally expanded chamber occupying approximate middle portion of oesophagus, 70–98 (90 ± 11, 6) long or 23–33% (30% ± 4, 6) of oesophagus length, 18–30 (24 ± 4, 6) wide or 15–20% (18% ± 2, 6) of body width, immediately following a slightly expanded portion of oesophagus, having wall 2–3 (2.3 ± 0.5, 6) thick; diverticulate portion having a wall comprising diverticulae-like structures, 32–53 (39 ± 8, 6) long or 10–18% (13% ± 0.03, 6) of oesophagus length, 8–20 (12 ± 4, 6) wide or 6–14% (8% ± 0.02, 6) of body width, immediately following medial oesophageal bulb, having wall 2–3 (2.5 ± 0.5, 6) thick. Oesophageal gland enveloping oesophagus pre-caecal dilation, diverticulate portion, and posterior portion of oesophageal bulb, 63–135 (103 ± 23, 8) long or 21–52% (36% ± 8, 8) of oesophagus length, 28–48 (39 ± 7, 8) wide or 26–33% (29% ± 2, 8) of body width. Caecal bifurcation 175–360 (280 ± 69, 8) or 17–38% (29% ± 7, 8) of body length from anterior body end; caeca extending posterioriad in parallel, 127–192 (162 ± 23, 8) long or 15–19% (16% ± 1, 8) of body length, 14–31 (25 ± 5.5, 8) wide, ventral to lateral nerve cord, containing granular material within lumen of some individuals (Figs. 1–3).

Testis 203–345 (286 ± 45, 8) long or 24–32% (29% ± 2, 8) of body length, 18–55 (36 ± 13, 8) wide or 15–36% (27% ± 7, 8) of body width, 6–15 (9 ± 3.4, 8) × longer than wide, intercaecal (Figs. 1–3), processes extending dorsoventrally. Post-testicular space 210–455 (349 ± 73, 8) long or 20–41% (36% ± 7, 8) of body length. Vasa efferentia comprising interconnecting meshwork of fine ducts entwined throughout testicular tissue, 10–13 (2) in diameter, extending primarily dorsoventrally and along ventral surface of testis, coalescing in posterior region of testis; vas deferens 30–75 (46 ± 16, 6) long, 3–8 (4 ± 2, 6) wide, emanating from postero-ventral portion of testis, extending dextral lateral to ovary before curving medially and posterioriad and extending posterioriad beside ascending uterus for a short distance before becoming confluent with cirrus sac. Cirrus sac 103–168 (151 ± 22, 7) long or comprising 71–81% (77% ± 0.04, 7) length of male terminal genitalia, 15–33 (25 ± 5, 7) wide or 16–22% (18% ± 0.02, 7) of body width, having extremely thin wall approximately 1–2 (2 ± 0.5, 8) thick, including seminal vesicle and cirrus; seminal vesicle 98–180 (150 ± 19, 7) long, 18–30 (26 ± 4.3, 7) wide, anterior half filling breadth of cirrus sac, posterior half filling 39–60% (51% ± 0.06, 7) breadth of cirrus sac, containing sperm in 6 of 10 specimens, extending sinuously posterioriad before narrowing and curving anterodorsally. Common genital pore 155–220 (184 ± 20, 8) or 17–20% (18% ± 1, 8) of body length from posterior end of body, 28–50 (38 ± 7, 8) wide from sinistral body margin, 50–85 (65 ± 12, 8) from dextral body margin (Figs. 1–3, 9, 10).

Ovary sinistral to testis, slightly lobed, 25–53 (41 ± 10, 8) long or 3–5% (4% ± 0.08, 8) of body length, 18–63 (40 ± 15, 8) wide or 20–47% (28% ± 9, 8) of body width, 0.7–1.8 (1 ± 0.4, 8) × wider than long, immediately post-testicular, ventral to lateral nerve-cords; post-ovarian space 275–405 (344 ± 43, 7) long or 33–36% (34% ± 4, 7) of body length (Figs. 9, 10). Oviduct (including oviducal ampulla) 153–288 (243 ± 43, 8) long, 6–9 (7 ± 1.1, 6) wide; oviducal ampulla 13–30 (21 ± 6, 6) long or 6–12% (8% ± 2, 6) of oviduct length, 10–28 (17 ± 6.3, 6) wide. Laurer’s canal 10–33 (22 ± 9, 6) long, 3–5 (5 ± 0.7, 6) wide, sinistral to oviducal seminal ampulla (Figs. 9, 10). Oötype 13–28 (18 ± 5.2, 7) long, 8–15 (13 ± 2.3, 7) wide, posterior to all other genitalia (Figs. 9, 10). Vitellarium having
Figs. 9–10 *Gymnurahemecus bulbosus* Warren and Bullard gen. et sp. nov. (Digenea: Aporocotylidae) from the heart of the smooth butterfly ray, *Gymnura micrura* (Bloch and Schneider) (Myliobatiformes: Gymnuridae). (9) Genitalia of holotype, ventral view. (10) Genitalia of paratype, dorsal view. Testis (t), ovary (o), vitelline duct (v), vas deferens (vd), oviduct (ov), ascending and descending portions of the uterus (u), common genital pore (cgp), seminal vesicle (sv), metraterm (met), Laurer’s canal (lc), oviducal ampullae (oa), and oötype (oo). Bars = 100 μm. Note that nerve cords are drawn dorsal so as not to obscure the genitalia.

follicles compacted in dense lobules, occupying space dorsal and lateral to testis and caeca; common collecting duct 178–385 (281 ± 68, 7) long, 8–13 (10 ± 1.5, 7) wide. Uterus extending directly anteriad from oötype, 155–298 (251 ± 45, 8) long or 18–32 (25 ± 0.04, 8) of body length, 13–30 (22 ± 5, 8) wide, with wall 2 (8) thick; ascending portion extending sinuously anteriad and dorsal to seminal vesicle before coursing diagonally across mid-line, containing eggs in 5 of 10 specimens (Figs. 1 and 9), containing sperm in 3 of 10 specimens (superficially resembling seminal vesicle), curves dextrally before immediately curving anteriorly and sinistral to posterior margin of ovary before connecting with descending portion; descending portion 28–65 (52 ± 12, 8) long or 17–28% (20 ± 4, 8) of ascending uterus length, 15–28 (21 ± 4, 8) wide, with wall 1 (8) thick, containing eggs in 5 of 10 specimens (Figs. 1, 9), extending posteriorad before connecting with metraterm; metraterm 73–110 (92 ± 10, 8) long or 1.4–2.6 (1.8 ± 0.4, 8) × longer than the descending uterus, 15–28 (21 ± 4, 8) wide, comprising distal-most portion of female reproductive tract, demarcated from descending uterus by obvious constriction (Figs. 9, 10), with eggs in 3 of 10 specimens, with wall 2 (8) thick. Uterine eggs 18–25 (21 ± 2.8, 7) in diameter or 51–82% (71% ± 14, 6) of uterus width, containing a large spheroid body plus several smaller, dense lipid-like bodies, with thin shell (Fig. 9). Excretory bladder small, 4–10 (7.5 ± 2.3, 7) long, 2–7 (4.2 ± 1.5, 7) wide, medial (Figs. 1–3).

Taxonomic summary

Type and only reported host: smooth butterfly ray, *Gymnura micrura* (Bloch and Schneider) (Myliobatiformes: Gymnuridae).
Site in host: Heart lumen.
Type locality: Mobile Bay (30° 13′ 22.61″ N, 88° 3′ 18.57″ W), North central Gulf of Mexico.
Prevalence and intensity of infection: Seven of 54 (prevalence = 13%) smooth butterfly rays sampled in 2016 were infected by 1, 1, 1, 1, 2, 2, and 4 specimens of *G. bulbosus* (mean intensity = 1.7). Three of 20 (15%) smooth butterfly rays sampled in 2017 were infected by 1 specimen of *G. bulbosus* each (mean intensity = 1.0).
Etymology: The specific epithet “bulbosus” refers to the distinct oesophageal bulb of the new species.

Sequence comparison and phylogenetic results
The amplified 28S fragment from the two specimens of the new species comprised 1622 nucleotides (MH555432 and MH555433-GenBank). These were identical (100% similar) to each other; differed from the 28S sequence of *C. trondheimensis* (AY157239) by 256 nucleotides (15%); and differed from those of *O. glaucostegi* and Aporocotylidae sp. NSW1 by 371 (32%) and 349 (30%).
nucleotides, respectively. The recovered 28S phylogeny (Fig. 11) placed the new species within a clade that included sequences from two adult blood flukes (C. trondheimensis and O. glaucostegi) infecting chondrichthyanas as well as that of a cercaria extracted from a bivalve. Expectedly, the BI tree recovered four clades comprising the blood flukes of marine actinopterygians, euryhaline elopomorphs, freshwater cercariae, and marine chondrichthyanas.

Key for identification of fish blood flukes (Aporocotylidae) infecting chondrichthyans

1. Body spinous, lateral tegumental spines (LTSs) C-shaped, each on a muscular peduncle
2. Body aspinous
3. Intestinal caeca X-shaped, oviducal ampulla absent
4. Intestinal caeca inverse U-shaped, oviducal ampulla present
5. Adults infecting mesenteric vessels; body margin having lateral tubercles
6. Adults infecting heart; body lacking lateral tubercles
7. Body minute (< 1 mm long), testis curving < 15 times
8. Body < 2 × longer than wide, mid-body LTSs < 20 μm long
9. Body < 7–8 × longer than wide, mid-body LTSs < 25 μm long

Taxonomic remarks
The new genus is most similar to Hyperandrotrema (two species, both infecting lamniform sharks) and Chimaerohemecus (monotypic, infecting chimaeras) by the combination of having a minute, diminutive, aspinous anterior sucker that is not demarcated from the body, C-shaped lateral...
Discussion

Because chondrichthyans are the earliest branching, extant lineage of jawed vertebrate (Craniata: Gnathostomata), their blood flukes comprise an obvious and requisite group with which to test hypotheses concerning fish blood fluke monophyly and blood fluke-craniate cophyly. This area of research has progressed considerably since the late 1990s, when it was accepted that the blood flukes of fishes exhibited no detectable level of phylogenetic host specificity (Smith 1997a). The present study, comprising only the 2nd and 3rd published elasmobranch and chondrichthyan blood fluke 28S sequences (Cribb et al. 2017), respectively, provides further evidence of a monophyletic chondrichthyan blood fluke lineage. This result agrees with and extends previous morphology- and/or nucleotide-based phylogenetic assertions that the blood flukes of early-branching jawed craniates are monophyletic and phylogenetically distant from the blood flukes of ray-finned fishes (Actinopterygiia: Euteleostei) (Bullard et al. 2006, 2008; Bullard and Jensen 2008; Cribb et al. 2017; Orélis-Ribeiro et al. 2013, 2014, 2017). Clearly, the chondrichthyan blood flukes share morphological features that set them apart as unique and differentiate them from other blood flukes infecting ray-finned fishes, turtles, crocodiles, birds, and mammals (present study; Bullard et al. 2006; Orélis-Ribeiro et al. 2013). However, relatively low taxon sampling for chondrichthyan blood flukes used in molecular phylogenetic studies limits our ability to thoroughly test these patterns. Further, no life cycle for a chondrichthyan blood fluke is known. Aporocotylidae sp. NSW1 is a cercarial sequence, and the definitive host for that taxon is indeterminate; however, Cribb et al. (2017) assumed that it matured in an elasmobranch because it claded with O. glaucostegi, and that clade is sister to C. trondheimensis (Cutmore et al. 2018).

Although it has been extensively demonstrated that morphologically similar fish blood flukes mature in phylogenetically related craniates (Bullard et al. 2006, 2008; Bullard and Jensen 2008; Orélis-Ribeiro et al. 2013, 2014, 2017), no molecular phylogenetic evidence definitively supports a strict cophyly hypothesis for the blood flukes of craniates (Orélis-Ribeiro et al. 2017). For example, existing blood fluke phylogenies, including ours herein, fail to recover a topology reflective of the current deep classification system for the subphylum Craniata (see Nelson et al. 2016), i.e., the blood flukes of cartilaginous fishes are monophyletic and sister to all remaining craniate blood flukes. Instead, the recovered phylogenies generally show a monophyletic Aporocotylidae, which is sister to the paraphyletic turtle blood flukes (“Spirorchidae”) and monophyletic Schistosomatidae (Fig. 11) (Orélis-Ribeiro et al. 2014; Cribb et al. 2017). Again, low taxon sampling among the blood flukes of early-branching craniates is a contributing factor to this conundrum, and this lack of information underscores the importance of robust taxonomic descriptions coupled with molecular sequence data from chondrichthyan blood flukes. Sequences from blood flukes infecting chondrichthyans (especially sharks), early-branching actinopterygians (Acienseraiformes [sturgeons and paddlefishes], Polypterusiformes [bichirs], Amiaformes [bowfin], Lepisosteiformes [gars]), and early-branching members of Teleostei (see Nelson et al. 2016) could result in a topology that mirrors that of craniates branching members of Teleosteomorpha (see Nelson et al. 2016). Again, low taxon sampling among the blood flukes of early-branching craniates is a contributing factor to this conundrum, and this lack of information underscores the importance of robust taxonomic descriptions coupled with molecular sequence data from chondrichthyan blood flukes. Sequences from blood flukes infecting chondrichthyans (especially sharks), early-branching actinopterygians (Acienseraiformes [sturgeons and paddlefishes], Polypterusiformes [bichirs], Amiaformes [bowfin], Lepisosteiformes [gars]), and early-branching members of Teleostei (see Nelson et al. 2016) could result in a topology that mirrors that of craniates (Chondrichthyes sister to Actinopterygii + Sarcopterygii). Obviously, obtaining a blood fluke from a hagfish (Myxiniformes) or a lamprey (Petromyzontiformes) would be a breakthrough in this regard.

The recovered 28S phylogeny (Fig. 11) indicates four fish blood fluke lineages corresponding to the phylogenetic and ecological affiliation of their definitive hosts: marine
actinopterygians, euryhaline elopomorphs, freshwater cercariae, and marine chondrichthyanas. Cribb et al. (2017) recovered the same clades and discussed them; however, they recovered the blood flukes infecting rays and chimaeras as sister to those infecting freshwater actinopterygians. Based on only a few life cycles from marine and freshwater fish blood flukes, Orélis-Ribeiro et al. (2014) suggested a dichotomy between marine and freshwater fish blood flukes that infect polychaetes and bivalves vs. those that infect snails, respectively. Doubtless, previous speculations on the evolutionary history of the blood flukes is wanting for information about their life cycles. Although several workers have described cercariae morphologically ascribed to the fish blood flukes (Smith 1997b), Aporocotylidae sp. NSW1 (MF503307) is the only published cercarial sequence that clades with adult blood flukes infecting chondrichthyanas (Cribb et al. 2017). Although no life cycle for a chondrichthyan aporocotylid is known and despite not knowing the identity of the definitive host for the aforementioned cercaria, Cribb et al. (2017) speculated that all elasmobranch blood flukes utilize a bivalve intermediate host rather than a gastropod or polychaete (this assumes also that all blood flukes of marine ray-finned fishes utilize polychaetes as exemplified so far by Aporocotyle simplex Odhner, 1900 [see Koie 1982]; Cardicola forsteri Cribb et al., 2000 [see Cribb et al. 2011]; Cardicola parvus Bullard et al., 2012 [see Bullard et al. 2012; Siegal et al. 2018]; and Cardicola larueli Short, 1953 [see McVay et al. 2011; Siegal et al. 2018]) only. They predicted that this could explain the phylogenetic separation between the blood flukes that mature in chondrichthyanas and those of actinopterygians.

Regarding hosts and blood fluke ancestry, within the marine actinopterygian clade (Fig. 11), it is noteworthy that Elopica spp. are sister to all of the blood flukes infecting the remaining marine actinopterygians. The hosts for Elopica spp. comprise euryhaline fishes, ladyfishes (Elops spp.: Elopidae), and tarpons (Megalops spp.: Megalopidae) (Orélis-Ribeiro et al. 2017) that spend considerable periods of their life in freshwater or low salinity estuarine waters (Zale and Merrifield 1989; Adams and Cooke 2015). Bullard (2014) documented eggs and schistosomula larvae of Elopica nolancrribi Bullard, 2014 in the gill epithelium and blood of juvenile ladyfish (Elops saurus Linnaeus) in a northern Gulf of Mexico estuary; suggesting that the life cycle was being completed in that estuary or a nearby river(s). Species of Elopica Bullard, 2014 and Paracardicoloides Martin, 1974 infect fishes with a leptocephalus larva (Euteleostei: Elopomorpha), are morphologically similar, and are sister taxa based upon ITS2 sequence data (Bullard 2014; Orélis-Ribeiro et al. 2017); all of which strongly suggest cophyly among elopomorphs and their blood flukes. Nolan and Cribb (2004) demonstrated the life cycle of P. yanagutii, which infects a riverine freshwater snail (Posticobia brazieri [Smith] [Littorinimorpha: Tateidae]) and matures in the Australian long-finned eel, Anguilla reinhardtii Steindachner. The assertion that related blood flukes infect related intermediate hosts predicts that Elopica spp. (like the related P. yanagutii) use gastropods rather than bivalves or polychaetes. Cercariae ascribed to the fish blood flukes by molecular barcoding and phylogenetic inference (i.e., Aporocotylidae sp. W5003, Sanguincola cf. inermis, and Aporocotylidae sp. W5004; see Cribb et al. 2017) also infect gastropods but are distantly related to Elopica spp. Hence, Cribb et al.’s (2017) tree and ours herein (if Elopica spp. have a gastropod intermediate host) suggest that gastropod blood flukes are paraphyletic.

We do not know the intermediate host for G. bulbosus, but based upon Cribb et al.’s (2017) prediction, it should be an estuarine or littoral bivalve. Scant information is available on the life histories of the smooth butterfly rays throughout their range; however, this fish is considered to be a relatively non-vagile resident of estuaries, with females producing offspring year-round (Yokota and Lessa 2006; Yokota et al. 2012). Given the residency of this elasmobranch, the host is likely littoral or estuarine. Examinations of estuarine invertebrates in the northern Gulf of Mexico continue (MBW) in an attempt to isolate infected intermediate hosts, especially bivalves.

Phylogenetic analyses involving the chimaera blood fluke C. trondheimensis and the ray blood flukes consistently produce long branches (Bullard et al. 2008; Bray et al. 2012; Orélis-Ribeiro et al. 2013, 2014, 2017; Santoro et al. 2015; Yong et al. 2016a, b, 2018; Cribb et al. 2017; Siegal et al. 2018). We speculate that the genetic differences that produce these long branches are indicative of a long phylogenetic separation from other blood flukes and that morphological distinctness is reflected by genetic distinctness. The inferred long branches could also be a result of limitations to taxon sampling associated with extinction in chimaera and ray blood flukes (and their hosts). Furthermore, unresolved, deep relationships among chondrichthyan and ray-finned fish blood flukes (Fig. 11) are likely a result of long branch artifacts. Greater taxon and character sampling will ultimately be needed to resolve relationships among these major lineages.

Acknowledgements We thank Marcus Drymon (Mississippi State University) for facilitating the collection of smooth butterfly rays in Mobile Bay, AL.

Funding information This study was supported by research grants from the Alabama Marine Resources Division, Auburn University Vice President for Research and Economic Development, Southeastern Cooperative Fish Parasite and Disease Project (Alabama Department of Conservation and Natural Resources), Alabama Agriculture Experiment Station, and US Department of Agriculture. Earlier exploratory aspects of this project were supported by grants from the National Science Foundation.
Compliance with ethical standards

All applicable institutional, national, and international guidelines for the care and use of animals were followed.

Conflict of interest The authors declare that they have no conflict of interest.

Disclaimer The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the US Fish and Wildlife Service.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Bullard SA, Jensen K, Overstreet RM (2009) Historical account of the two family-group names in use for the single accepted family comprising the “fish blood flukes”. Acta Parasitol 54:78–84

Cutmore SC, Cribb TH, Yong RQ-Y (2018) Aporocotylids from batoid and elopomorph fishes from Moreton Bay, Queensland, Australia, including a new genus and species of blood fluke infecting the Giant shovelnose ray, Glaucestegus typus (Rhinopristiformes: Glaucestegidae). Parasitol Int 67:768–775

Katie M (1982) The redia, cercaria and early stages of Aporocotyle simplex Odhner, 1900 (Sanguinicolidae) – a digenetic trematode which has a polychaete annelid as the only intermediate host. Ophelia 21:115–145

Lockyer AE, Olson PD, Littlewood DTJ (2003a) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biol J Linn Soc 78:155–171

Purples, and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome, pp 575–577
Short RB (1954) A new blood fluke, Selachohemus olsoni, n. g., n. sp. (Aporocotylidae) from the sharp-nosed shark, Sciodonon terranovae. P Helminth Soc Wash 21:78–82
Van der Land J (1967) A new blood fluke (Trematoda) from Chimaera monstrosa L. Proceedings Koninklijke Akademie te Amsterdam, Section C, Biological and Medical Sciences 70:110–120