A New Species of *Spirorchis* MacCallum, 1918, (Digenea: Schistosomatoidea) and *Spirorchis scripta* Stunkard, 1923, Infecting River Cooter, *Pseudemys concinna* (Le Conte, 1830), (Testudines: Emydidae) in the Pascagoula River, Mississippi, U.S.A., Including an Updated Phylogeny for *Spirorchis* spp.

Jackson R. Roberts, 1 Kenneth M. Halanych, 2 Cova Arias, 3 Stephen S. Curran, 4 and Stephen A. Bullard 1,5

1 Aquatic Parasitology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, 203 Swingle Hall, Auburn, Alabama 36849, U.S.A. (e-mail: jrr0035@auburn.edu; sab0019@auburn.edu),

2 Department of Biological Sciences and Molette Biology Laboratory for Environmental & Climate Change Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, Alabama 36830, U.S.A. (e-mail: ken@auburn.edu),

3 Aquatic Microbiology Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 559 Duvall Drive, Auburn University, Auburn, Alabama 36832, U.S.A. (e-mail: ariascr@auburn.edu), and

4 Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 36489, U.S.A. (e-mail: stephen.curran@usm.edu)

ABSTRACT: River cooters (*Pseudemys concinna* [Le Conte, 1830]) from the Pascagoula River (30°37′07.67″N; 88°36′44.53″W; Mississippi, U.S.A.) were infected by *Spirorchis scripta* Stunkard, 1923, and *Spirorchis testiplexus* n. sp. The new species resembles *Spirorchis artericola* (Ward, 1921) Stunkard, 1921, and *Spirorchis innominatus* Ward, 1921 (type species), by having a median esophageal diverticulum, ceca that extend slightly posterior to the genitalia, 10 testes, and a testicular column that extends anterior to near the cecal bifurcation. Based on a comparative morphological study of existing type materials, vouchers, and published descriptions of similar congeners, *S. testiplexus* is unique by the combination of having a proportionally wider body, laterally directed cecal diverticula, deeply lobed testes, a testicular column that fills the intercecal space, and an external seminal vesicle that occupies the space between the posterior-most testis and the ovary and that passes dorsal or dorsolateral to the ovary. The large-subunit rDNA (28S) Bayesian inference phylogenetic analysis (including 16 turtle blood fluke species of 7 genera) showed a strongly supported monophyletic *Spirorchis* MacCallum, 1918, grouping sister to *Spirhapalum siamensis* Tkach, Snyder, and Vaughn, 2009.

KEY WORDS: *Spirorchis*, Emydidae, *Pseudemys concinna*, taxonomy, Pascagoula River, Reelfoot Lake, Coastal Plain, 28S, 18S.

Cooters (Testudines: Emydidae: *Pseudemys* spp.) comprise 8 turtle species that range in Atlantic and Gulf of Mexico river drainages (Ernst and Lovich, 2009; van Dijk et al., 2014). Despite this relatively high intrageneric diversity, only the river cooter, *Pseudemys concinna* (Le Conte, 1830), has been reported as a host for blood flukes. Prior to the present study, 4 species of *Spirorchis* MacCallum, 1918 have been reported to infect this turtle: *Spirorchis innominatus* Ward, 1921 (type species), *Spirorchis artericola* (Ward, 1921) Stunkard, 1921, *Spirorchis elegans* Stunkard, 1923, and *Spirorchis scripta* Stunkard, 1923 (Table 1).

Herein, we report the presence of *S. scripta* and describe a new species in the genus based on the results of parasitological examinations of 2 river cooters opportunistically sampled from the Pascagoula River, Mississippi, U.S.A. We also contribute molecular sequence data for the new species toward an updated phylogeny for *Spirorchis* spp.

MATERIALS AND METHODS

Two river cooters were sampled by seine on 26 May 2015 from the Pascagoula River (30°37′07.67″N; 88°36′44.53″W), Mississippi, U.S.A. Turtles were killed by decapitation, and necropsies were performed using 7.0 g/liter sodium citrate saline solution following Roberts, Orélis-Ribeiro, Halanych et al. (2016). Live turtle blood flukes for morphology were killed, fixed, stained, and mounted following Roberts, Orélis-Ribeiro, Halanych et al. (2016). Turtle scientific and common names follow van Dijk et al. (2014) and Guyer et al. (2015). Classification and anatomical terms for turtle blood flukes follow Roberts, Orélis-Ribeiro, Halanych et al. (2016). Turtle scientific and common names follow van Dijk et al. (2014) and Guyer et al. (2015). Classification and anatomical terms for turtle blood flukes follow Roberts, Orélis-Ribeiro, Halanych et al. (2016); Roberts, Platt et al. (2016); and Roberts et al. (2017). Specimens intended for molecular analyses (a specimen of the newly
Table 1. *Spirorchis* spp. infecting river cooters, *Pseudemys concinna* (Le Conte, 1830) (Emydidae). (Bold terms are infections reported herein).

<table>
<thead>
<tr>
<th>Spirorchis sp.</th>
<th>Reported host</th>
<th>Site in host</th>
<th>Locality</th>
<th>Accession nos.*</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirorchis artericola Ward, 1921</td>
<td>as Pseudemys hieroglyphica Holbrook, 1836</td>
<td>blood (adult)</td>
<td>Reelfoot Lake (Mississippi River) (36°21′12.23″N; 89°25′21.50″W), Tennessee, U.S.A.</td>
<td>USNM 80643, 80644; HWML 31115</td>
<td>Byrd (1938, 1939)</td>
</tr>
<tr>
<td>Spirorchis elegans Stunkard, 1923</td>
<td>as Pseudemys elonae (Brimley, 1928)</td>
<td>blood (adult)</td>
<td>Either the Neuse or Cape Fear river, Durham, North Carolina, U.S.A.</td>
<td>University of Maryland, Department of Zoology no. 790</td>
<td>Ernst and Ernst (1975)</td>
</tr>
<tr>
<td>Spirorchis testiplexus, n. sp.</td>
<td>P. concinna mesentery (adult)</td>
<td>Pascagoula River (30°37′07.67″N; 88°36′44.53″W), Mississippi, U.S.A.</td>
<td>USNM 1437615, 1437616, 1437617, 1437618, 1437619</td>
<td>Present study</td>
<td></td>
</tr>
<tr>
<td>Spirorchis innominatus Ward, 1921 (type species)</td>
<td>as P. hieroglyphica</td>
<td>blood (adult); intestine (eggs)</td>
<td>Lake Talawanda (Canadian River) (34°58′44.57″N; 95°47′36.96″W), McAlester, Oklahoma, U.S.A.</td>
<td>USNM 30867</td>
<td>Harwood (1931)</td>
</tr>
<tr>
<td></td>
<td>as Pseudemys concinna savanniensis Carr, 1937</td>
<td>blood (adult)</td>
<td>Natural Bridge (St. Mark’s River) (30°17′3.74″N; 84°9′4.45″W), Florida, U.S.A.</td>
<td>Not specified</td>
<td>Teehan and Short (1989)</td>
</tr>
<tr>
<td>Spirorchis scripta Stunkard, 1923</td>
<td>as P. hieroglyphica†</td>
<td>blood (adult)</td>
<td>Reelfoot Lake (36°21′12.23″N, 89°25′21.50″W), Tennessee.</td>
<td>USNM 80649; HWML 31115</td>
<td>Byrd (1938, 1939); Platt (1993); Platt and Prestwood (1990)</td>
</tr>
<tr>
<td></td>
<td>P. concinna heart (adult)</td>
<td>Pascagoula River (30°37′07.67″N; 88°36′44.53″W), Mississippi</td>
<td>USNM 1437620</td>
<td>Present study</td>
<td></td>
</tr>
</tbody>
</table>

*USNM, National Museum of Natural History; HWML, Harold W. Manter Laboratory Collection.

† Byrd (1939) reported *S. scripta* and described *Spirorchis blandingoides* Byrd, 1939, from *P. concinna* (as *P. hieroglyphica*). We accept *S. blandingoides* as a junior subjective synonym of *S. scripta* (see Platt [1993]).
identified species, a specimen of *Spiroorchis haematobius* [Stunkard, 1922] Price, 1934, and a specimen of *Vasotrema cf. robustum* Stunkard, 1928) were placed directly into absolute ethanol. The hologenophore (molecular voucher) of the new species was cut in half: the anterior end was used for DNA extraction and sequencing (GenBank MH002459 [28S], MH023418 [18S]) and the posterior end was stained and mounted as indicated above. Measurements are reported in micrometers (μm) as the range followed by the mean and number of specimens measured for that feature in parentheses. Holotype, paratype, and voucher specimens of turtle blood flukes were borrowed from the American Museum of Natural History (AMNH; New York, New York), Harold W. Manter Laboratory Collection (HWML; Lincoln, Nebraska), National Museum of Natural History (USNM; Smithsonian Institute, Washington, D.C.), and Thomas Platt’s personal research collection (TPRC), which Professor Platt has kindly donated to S.A.B. (see Taxonomic Summary; Materials Examined).

DNA extraction, amplification, and sequencing were performed following Orélis-Ribeiro et al. (2014). Assembled sequences (Table 2) were aligned with MAFFT 7.310 (Katoh and Standley, 2013) and subsequently corrected by eye in Mesquite 3.2 (Madison and Maddison, 2017). Regions that could not be unambiguously aligned were excluded from further analyses, and the final alignment (1,272 nucleotide positions with 43 excluded) was deposited in TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S22396?format=html). MrBayes 3.5.3 (Ronquist et al., 2012) was used to reconstruct a Bayesian inference phylogeny based on the 28S rDNA fragment. Using a General Time Reversal (GTR) + Gamma model, 4 runs of 4 chains each were conducted for 1,000,000 generations. Priors were set to default values and burn-in was set to 25% of generations (or 250,000). Out-groups were selected from representative blood fluke genera informed by the phylogenetic analyses of Orélis-Ribeiro et al. (2014); Roberts, Orélis-Ribeiro, Dang et al. (2016); and Roberts, Platt et al. (2016). The in-group comprised all available 28S sequences for species of *Spiroorchis* as well as freshwater turtle blood flukes likewise selected based on the above studies (Table 2). Chains were run until the average standard deviation of split frequencies was below 0.01. The resulting phylogenetic tree was viewed using FigTree v1.4.3 (Rambaut, 2009) and subsequently edited in Adobe Illustrator CC 2015.3 (Adobe Systems).

RESULTS

Spiroorchis testiplexus Roberts, Curran, and Bullard n. sp.
(Figs. 1–4)

Description

Based on light microscopy of 10 whole-mounted specimens. Body 2,650–3,850 (3,366; 10) long or 2.9–4.7× (3.7; 10) longer than wide, 660–850 (738; 10) wide or 19–26% (22%; 10) of body length at level of cecal bifurcation, 720–1,010 (922; 10) wide or 21–34% (28%; 10) of body length at level of middle testis (typically maximum width), 370–500 (421; 10) wide or 11–15% (13%; 10) (Figs. 1, 3). Oral sucker 41–86 (57; 10) long or 1–3% (2%; 10) of body length, 61–75 (70; 10) wide or 8–11% (10%; 10) of body width at level of cecal bifurcation, papillae present, spines present. Nerve commissure 193–272 (238; 10) or 6–8% (7%; 10) of body length from anterior body end. Pharynx 59–89 (70; 10) long or 9–16% (13%; 10) of esophagus length, 61–77 (70; 10) wide or 1.6–4.6× (2.5; 10) esophagus width immediately posterior to pharynx, 0.8–1.3× (1.0; 10) longer than wide (Figs. 1, 3). Esophagus extending posteriorly 430–645 (550; 10) long or 15–18% (16%; 10) of body length from mouth to anterior margin of median esophageal diverticulum, 16–43 (31; 10) wide posterior to pharynx, with wall 2–20 (8; 10) thick, 27–116 (83; 10) wide at esophagus median or 4–16% (11%; 10) of body width at level of cecal bifurcation, with wall 18–72 (49; 10) thick, 111–150 (129; 10) wide anterior to median esophageal diverticulum or 15–20% (18%; 10) of body width at level of cecal bifurcation, with wall 18–80 (42; 10) thick; median esophageal diverticulum 481–710 (601; 10) or 16–19% (18%; 10) of body length from anterior body end, 105–200 (153; 10) long or 18–36% (28%; 10) of esophagus length, 30–84 (50; 10) wide or 4–12% (7%; 10) of body width at level of cecal bifurcation; esophageal gland 422–655 (546; 10) long or 15–17% (16%; 10) of body length, 250–364 (308; 10) wide or 38–49% (42%; 10) of body width at level of cecal bifurcation. Intestinal bifurcation 499–737 (623; 10) from anterior body end or 17–20% (19%; 10) of body length, dorsal to median esophageal diverticulum; sinistral cecum 1,990–3,150 (2,586; 10) long or 74–82% (77%; 10) of body length, 23–80 (49; 10) wide or 3–12% (7%; 10) of body width at level of cecal bifurcation, 68–102 (83; 10) wide or 7–10% (9%; 10) of body width at level of middle testis, 36–98 (66; 10) wide or 10–23% (16%; 10) of body width at level of...
Table 2. Turtle blood fluke sequences (28S and 18S) used in the present study. (Bold sequences were either generated by or treated by authors herein.)

<table>
<thead>
<tr>
<th>Turtle blood flukes</th>
<th>Host species</th>
<th>Locality</th>
<th>GenBank accession numbers</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baracktrema obamai Roberts, Platt and Bullard, 2016</td>
<td>Siebenrockiella crassicollis (Gray, 1830), black marsh turtle</td>
<td>Perak (probably Perak River), Malaysia</td>
<td>KX061500</td>
<td>Roberts, Platt et al. (2016)</td>
</tr>
<tr>
<td>Spirapadum polexatum Ejsmont, 1927</td>
<td>Emys orbicularis (Linnaeus, 1758), European pond turtle</td>
<td>Lesniki, Ukraine</td>
<td>AY604705</td>
<td>Snyder (2004)</td>
</tr>
<tr>
<td>Spirapadum skamensis Tkach, Snyder and Vaughn, 2009</td>
<td>Cuora amboinensis (Riche in Daudin, 1801), Southeast Asian pond turtle</td>
<td>Moei River (16°42′ N; 98°34′ E), Mae Sot, Thailand</td>
<td>FJ481166</td>
<td>Tkach et al. (2009)</td>
</tr>
<tr>
<td>Spirorchis testiplexus, n. sp. (as Spirorchis artericola [Ward, 1921]) Stunkard, 1921</td>
<td>Chrysemys picta (Schneider, 1783), painted turtle</td>
<td>Redfoot Lake (Mississippi River) (36°21′12.23″N; 89°25′21.50″W), Tennessee, U.S.A</td>
<td>AY604704 AY604712.1</td>
<td>Snyder (2004)</td>
</tr>
<tr>
<td>S. testiplexus</td>
<td>Pseudemys concinna (Le Conte, 1830), river cooter</td>
<td>Pascagoula River (30°37′07.67″N; 88°36′44.53″W), Mississippi, U.S.A.</td>
<td>MH002459 MH023418</td>
<td>Present study</td>
</tr>
<tr>
<td>Spirorchis collinsi</td>
<td>Deirochelys reticularia (Latreille in Sonnini and Latreille, 1801), chicken turtle</td>
<td>Big Beaver Pond (Tallapoosa River) (32°25′44.03″N; 85°38′44.87″W), Alabama, U.S.A.</td>
<td>KY091664</td>
<td>Roberts, Orelis-Ribeiro, Halanych et al. (2016)</td>
</tr>
<tr>
<td>Spirorchis haematobius (Sunkard, 1922) Price, 1934</td>
<td>Chelydra serpentina (Linnaeus, 1758), common snapping turtle</td>
<td>Missouri River, Iowa, U.S.A.</td>
<td>FJ481164</td>
<td>Tkach et al. (2009)</td>
</tr>
<tr>
<td>S. haematobius</td>
<td>C. serpentina</td>
<td>Pascagoula River (30°37′07.67″N; 88°36′44.53″W), Mississippi, U.S.A.</td>
<td>MH002458</td>
<td>Present study</td>
</tr>
<tr>
<td>Spirorchis picta Stunkard, 1923</td>
<td>Trachemys scripta (Thunberg in Schoepff, 1792), pond slider</td>
<td>Pond off Saugahatchee Creek (Tallapoosa River) (32°38′52.78″N; 85°29′7.20″W), Alabama</td>
<td>KY091665</td>
<td>Roberts, Orelis-Ribeiro, Halanych et al. (2016)</td>
</tr>
<tr>
<td>Spirorchis scripta Stunkard, 1923</td>
<td>T. scripta</td>
<td>Moungers Creek (Pascagoula River), Mississippi</td>
<td>AY222174 AY222093</td>
<td>Olson et al. (2003)</td>
</tr>
<tr>
<td>Spirorchis cf. scripta</td>
<td>D. reticularia</td>
<td>Big Beaver Pond (Tallapoosa River) (32°25′44.03″N; 85°38′44.87″W), Alabama</td>
<td>KY091666</td>
<td>Roberts, Orelis-Ribeiro, Halanych et al. (2016)</td>
</tr>
<tr>
<td>Unicaecum sp.</td>
<td>T. scripta</td>
<td>Reelfoot Lake (Mississippi River) (36°21′12.23″N; 89°25′21.50″W), Tennessee</td>
<td>AY604711</td>
<td>Snyder (2004)</td>
</tr>
<tr>
<td>Vasoatremia robustum Stunkard, 1928</td>
<td>Apalone spinifera (LeSueur, 1827), spiny softshell turtle</td>
<td>Nishnabotna River, Iowa</td>
<td>AY604706</td>
<td>Snyder (2004)</td>
</tr>
<tr>
<td>Vasoatremia cf. robustum</td>
<td>Apalone spinifera aspera (Agassiz, 1857), Gulf Coast spiny softshell turtle</td>
<td>Round Lake (Cahaba River) (32°41′50.91″N; 87°14′30.39″W), Cahaba River, Alabama</td>
<td>MH002457</td>
<td>Present study</td>
</tr>
</tbody>
</table>
Figures 1, 2. Line drawings of *Spirorchis testiplexus* n. sp. (holotype; USNM 1437615) from river cooter, *Pseudemys concinna* (Le Conte, 1830); ventral view of adult. 1. Whole worm. 2. Genitalia. Abbreviations: anterior testis (at), cecal termini (ct), cirrus (ci), cirrus sac (cs), common genital pore (cgp), dextral posterior cecum (dc), egg chamber (ec), esophageal gland (eg), esophagus (es), excretory pore (ep), excretory vesicle (ev), external seminal vesicle (esv), internal seminal vesicle (isv), Laurer’s canal (Lc), Manter’s organ (Mo), median esophageal diverticulum (med), metraterm (mt), middle testis (t5), nerve commissure (nc), ninth testis (t9), oral sucker (os), ovary (ov), oviducal seminal receptacle (osr), oviduct (od), pharynx (ph), posterior-most testis (pt), primary vitelline duct (vt), sinistral posterior cecum (sc), transverse vitelline duct (tvd), uterine egg (egg), vas deferens (vd), ventrolateral nerve chords (vln), vitellarium (vr).
Figures 3, 4. Line drawings of adult of *Spirorchis testiplexus* n. sp. from river cooter, *Pseudemys concinna* (Le Conte, 1830); dorsal view. 3. Whole worm; paratype (USNM 1437616). 4. Genitalia of paratype (USNM 1437616). Abbreviations: anterior testis (at), cecal termini (ct), cirrus (ci), cirrus sac (cs), common genital pore (cgp), dextral posterior cecum (dc), egg chamber (ec), esophageal gland (eg), esophagus (es), excretory pore (ep), excretory vesicle (ev), external seminal vesicle (esv), internal seminal vesicle (isv), Laurer's canal (Lc), Manter's organ (Mo), median esophageal diverticulum (med), metraterm (mt), middle testis (t5), nerve commissure (nc), ninth testis (t9), oral sucker (os), ovary (ov), oviducal seminal receptacle (osr), oviduct (od), pharynx (ph), posterior-most testis (pt), primary vitelline duct (vt), sinistral posterior cecum (sc), transverse vitelline duct (tvd), uterine egg (egg), vas deferens (vd), ventrolateral nerve chords (vln), vitellarium (vr).
cirrus sac width, 3.1–4.8 length, 27–43 (35; 10) maximum width or 50–75% 105–155 (130; 10) long or 2–5% (3%; 10) of maximum body width.

Ovary deeply lobed, intercelar, lateral to cirrus sac, ventral or ventrolateral to external seminal vesicle, 193–254 (224; 10) long or 6–7% (7%; 10) of body length,130–277 (200; 10) wide or 15–29% (22%; 10) of body width, 0.7–1.4× (0.9; 10) wider than long (Figs. 1–4); postovarian distance 409–591 (515; 10) or 14–18% (15%; 10) of body length (Figs. 1, 3). Oviduct extending posterior and sinistrad 35–80 (51; 10) or 1–2% (2%; 10) of body length, 7–18 (12; 10) wide; oviducal seminal receptacle 88–130 (107; 10) long or 2–4% (3%; 10) of body length, 30–45 (35; 10) wide or 3–6% (4%; 10) of maximum body width, oviduct continuing sinistrad 83–163 (117; 10) or 2–5% (3%; 10) of body length before connecting with oötype, 14–25 (20; 10) wide or 2–3% (2%; 10) of maximum body width. Laurer’s canal a narrow duct originating 23–75 (46; 10) or 11–33% (20%; 10) of ovary length from distal margin of seminal receptacle, extending 68–134 (96; 10) or 2–4% (3%; 10) of body length posterosinistrad, 14–39 (25; 10) wide or 3–8% (6%; 10) of body length at cecal termini (Figs. 3, 4). Vitellarium comprising a series of interconnected spheroid masses of small follicles (Figs. 3, 4), distributing from cecal bifurcation to cecal termini, originating 295–610 (486; 10) or 10–17% (14%; 10) of body length from anterior body end, ventrolateral to ceca and testes anteriorly and flanking ceca posteriorly (illustrated as only lateral to show course of posterior ceca; Figs. 1, 3), terminating 68–118 (92; 10) or 2–3% (3%; 10) of body length from posterior body end, coalescing into lateral vitelline collection ducts posterior to ovary; transverse vitelline duct 18–52 (32; 10) in maximum width, 190–300 (245) or 6–9% (7%; 10) of body length from cecal termini, 345–473 (427; 10) or 12–15% (13%; 10) of body length from posterior body end (Figs. 1, 3); primary vitelline duct extending posterior 98–141 (117; 10) or 3–4% (3%; 10) of body length before turning ventrad, extending 75–113 (100; 10) anteriad or 2–4% (3%; 10) of body length before merging with female genitalia at oviduct–oötype junction, 36–64 (46; 10) wide (Figs. 2, 4). Oötype and uterus difficult to discern in gravid specimens (9 of 10 gravid). Oötype 28 long by 28 wide (1). Uterus 50 long by 25 wide (1); egg chamber 84–107 (99; 9) long or 67–85% (79%; 9) of ovary length, 45–55 (50; 9) wide or 20–40% (27%; 9) of ovary width; metraterm 41–80 (66; 10)
long or 43–77% (65%; 9) or egg chamber length or 1.6× (1) longer than uterus, 16–28 (23; 9) wide or 29–60% (46%; 9) of egg chamber width or 1.1× (1) wider than uterus. Common genital pore 409–532 (481; 10) or 12–16% (14%; 10) of body length from posterior body end (Figs. 1, 3).

Excretory vesicle 16–39 (28; 10) wide or 4–9% (7%; 10) of body width at level of cecal termini; Manter’s organ turning 2–5 (3; 10) times proximally, intercecal or extending to cecal termini, 139–223 (179; 10) long or 5–7% (5%; 10) of body length, 23–64 (34; 10) wide or 5–14% (8%; 10) of body width at level of cecal termini, joining excretory vesicle at excretory pore; excretory pore dorsal, 16–39 (30; 10) or 1% (10) from posterior body end (Figs. 1, 3).

Taxonomic summary

Type host: Pseudemys concinna (Le Conte, 1830) (Testudines: Emydidae), river cooter; other host: Chrysemys picta (Schneider, 1783) (Testudines: Emydidae), painted turtle; other host: Pseudemys concinna (Le Conte, 1830) (Testudines: Emydidae), river cooter; other host: Chrysemys picta (Schneider, 1783) (Testudines: Emydidae), painted turtle (Snyder, 2004).

Type locality: Pascagoula River (30°37’07.67”N; 88°36’44.53”W; Mississippi, U.S.A.); other locality: Reelfoot Lake (36°21’12.23”; 89°25’21.50”W; Mississippi River basin, Tennessee, U.S.A.; Snyder [2004]).

Site of infection in host: Mesenteric blood vessels.

Prevalence and intensity of infection by adults: One of 2 individuals of *P. concinna* from the Pascagoula River had 12 adult specimens of *S. testiplexus*.

Specimens examined: AMNH: holotype and paratype of *S. elegans* (AMNH 134 and AMNH 1516, respectively), holotype of *S. haematobius* (AMNH 128), holotype of *S. scripta* (Stunkard, 1923) Price, 1934 (AMNH 133), holotype of *Spirorchis picta* Stunkard, 1923 (AMNH 131), and holotype and paratype of *S. scripta* (AMNH 128 [damaged specimen] and AMNH 130). HWML: voucher of the new species described herein (HWML 45793). USNM: holotype and paratype of *S. artericola* (USNM 1350610, 2 slides comprising 2 whole-mounted specimens), holotype and paratype of *S. innomina- tum* (USNM 1337308, 1 slide comprising 2 whole-mounted specimens), and holotype of *Spirorchis minutus* Byrd, 1939 (USNM 1321965). TPRC: paratypes of *Spirorchis kirki* (Platt, 1990) Platt, 1992.

Etymology: The specific epithet *testiplexus* is from the Latin “plexus” (interwoven) and refers to the strongly lobed testes of the new species that resemble interlocked puzzle pieces.

Molecular results

Available 28S sequences for *S. scripta* (AY222174.1) and S. cf. *scripta* (KY091666; Roberts, Orélis-Ribeiro, Halanych et al., 2016) were 99.4% (8 nucleotide differences) and 99.5% (8 nucleotide differences) similar, respectively, to the new species based on pairwise comparisons of the full-length sequences. The available 18S sequence for *S. scripta* (AY222093) was 99.7% (5 nucleotide differences) similar to the new species. The 28S and 18S sequences of the new species were 99.8% similar (3 nucleotide differences; alignment positions 27, 721, and 817 in the 28S) and identical to AY604704 and AY604712.1, respectively, both of which were previously identified as *Spirorchis artericola* (see Snyder [2004]). We borrowed Snyder’s (2004) voucher specimen (HWML 45793) that was linked with those GenBank sequences and found the voucher to have a proportionally wide body, laterally directed cecal diverticula, deeply lobed testes, a testicular column that nearly fills the intercecal space, and an external seminal vesicle that occupies the space between the posterior-most testis and the ovary and that passes dorsolateral to the ovary. This voucher specimen could be differentiated from the holotype and paratype of *S. artericola* (USNM 1350610) by the features of the testes and external seminal vesicle as well, indicating that the voucher was not conspecific with Ward’s (1921) types. Therefore, and see Remarks below, we regard HWML 45793, AY6047704, and AY604712.1 as conspecific with *S. testiplexus* (Table 2).

The 28S phylogenetic analysis showed a strongly supported (posterior probability = 1.0) monophyletic *Spirorchis* as sister to *Spirhapalum siamensis* Tkach, Snyder, and Vaughn, 2009 (Fig. 5). As previously reported (Tkach et al., 2009; Orélis-Ribeiro et al., 2014; Roberts, Orélis-Ribeiro, Halynch et al., 2016; Roberts, Platt et al., 2016), *Spirhapalum* Ejsmont, 1927, is paraphyletic, with *Spirhapalum polesianum* Ejsmont, 1927, sister to the *Spirorchis* spp. + *S. siamensis* clade.
Remarks

The new species resembles *S. artericola* and *S. innominatus* (type species) by having a median esophageal diverticulum, ceca that extend slightly posterior to the genitalia (to level of the excretory bladder), typically 10 testes, and a testicular column that extends anteriad to near the cecal bifurcation. It further resembles *S. artericola* by having a body that is approximately 3–5× longer than wide and posterior ceca with lateral diverticula along their entire length (Figs. 1, 3). Based on a comparative morphological study of existing type materials and vouchers (see Taxonomic Summary; Specimens Examined) plus published descriptions of similar congeners, *S. testiplexus* by having a body that is proportionally wider body, laterally directed cecal diverticula (like *S. haematobius, S. elegans, S. picta, S. minutus,* and *S. kirki*), deeply lobed testes, a testicular column that fills the intercecal space, and an external seminal vesicle that occupies the space between the posterior-most testis and the ovary and that passes dorsal or dorsolateral to the ovary. *Spirochis artericola* has spheroid or weakly lobed testes, a testicular column that does not fill the intercecal space, and an external seminal vesicle that is ventral to the ovary. *Spirochis innominatus* has an elongate body (>6.0× longer than wide) with smooth posterior ceca. Regarding the external seminal vesicle of the new species, it is markedly laterally expanded between the posterior-most testis and ovary such that it forms an apparent reservoir that is delimited anteriorly and posteriorly by a testis and the ovary, respectively (Figs. 2, 4). The position of the external seminal vesicle, which perhaps on the outset seems as if a minor feature prone to intraspecific variation, does reliably differentiate morphologically similar species of *Spirochis*. It is entirely preovarian (*S. minutus, Spirochis collinsi* Roberts and Bullard, 2016), ventral or ventrolateral to the ovary (*S. innominatus, S. artericola, S. haematobius, S. elegans, S. parvus, S. picta, S. kirki*), or dorsal or dorsolateral to the ovary (*S. scripta, S. testiplexus*). Indeed, the taxonomy of *Spirochis* spp. relies upon subtle morphological differences among species: they are difficult to differentiate. However, the orientation of the external
seminal vesicle combined with the presence/absence of the median esophageal diverticulum and diverticulate posterior ceca, as well as testicular column position, comprise helpful differential characters for members of the genus.

Specimens of *S. scripta* were collected from the same infected river cooter. We identified these turtle blood flukes as *S. scripta* based on the presence of a median esophageal diverticulum, ceca that extend far past the genitalia, a testicular column that nearly abuts the cecal bifurcation, 10 spheroid and oblong testes, and an external seminal vesicle dorsal to the ovary. These specimens matched previous taxonomic descriptions of this species (Stunkard, 1923; Platt, 1993) as well as borrowed museum specimens (AMNH 128, 130). In addition to the genetic differences between this taxon and the new species, the latter is distinctive by the combination of having lateral cecal diverticula (vs. smooth ceca in *S. scripta*), ceca that extend slightly posteriorly beyond the transverse vitelline duct (vs. extending far posterior, approximately 13% of body length, beyond transverse vitelline duct), deeply lobed testes (vs. testes with shallow lobes), and vitelline follicles that extend anteriad to near the level of the proximal margin of the median esophageal diverticulum (vs. extending to near the level of the nerve commissure). Previous authors have described the posterior ceca of *Spirorchis* spp. as smooth, simple, or sinuous (Stunkard, 1922, 1923; Platt, 1990, 2002; Roberts, Orélis-Ribeiro, Halanych et al., 2016). Based on the results of the present study, we suggest that the diagnosis of *Spirorchis* should include “posterior ceca smooth or having lateral diverticula.”

This represents the second report of *S. scripta* from the Pascagoula River (Olson et al., 2003), the second report of *S. scripta* from a river cooter (Byrd, 1939), and the first report of *S. scripta* infecting a river cooter from the Pascagoula River (Tables 1, 2).

DISCUSSION

A given turtle species may host multiple turtle blood fluke species (Stunkard, 1922, 1928; Byrd, 1939; Ulmer, 1959; Brooks and Mayes, 1975; Roberts, Orélis-Ribeiro, Halanych et al., 2016; Roberts and Bullard, 2017) and concurrent infections are not uncommon among turtles (Roberts and Bullard, personal observations). This includes simultaneous infection by congeneric turtle blood flukes (Ulmer, 1959; Roberts, Orélis-Ribeiro, Halanych et al., 2016; Roberts and Bullard, 2017) or turtle blood flukes of different genera (Stunkard, 1922; Brooks and Mayes, 1975). Concurrent infection can complicate correct taxonomic identification and molecular biology. If a given specimen is large enough, a relatively common, convenient, and simple practice is to rely upon a molecular voucher (hologenophore: a specimen that is cut into parts such that the same specimen can be used for morphology and molecular biology). If the specimen is minute and cannot be cut in half, we (and others) recommend wet-mounting the ethanol-preserved specimen to discern the species-specific differential characters. This is not always straightforward because taxonomists may not be, or perhaps rarely are, certain of the identity of specimens (i.e., the diagnostic characters of the taxon are indeterminate) upon dissecting the host. If the specimen is destroyed for molecular biology before it can be diagnosed, the identity of the specimen is dubious.

Error cascades resulting from the use of GenBank sequences that assume taxonomic identity based upon host identity, previously published records, gross appearance of the fluke, or the assumption of a nonconcurrent infection should be avoided. As demonstrated by the subtly distinctive *Spiroorchis* spp. herein, even light microscopic study of an unstained specimen as a temporary wet mount may be insufficient to reliably identify the specimen to species. Related to this, the present study serves as an example of a cryptic taxon in the GenBank database and the crucial importance of molecular vouchers. A stand-alone molecular analysis (unaccompanied by morphological comparisons to physical specimens) would have barcoded the new taxon as *S. artericola* and overestimated the level of intraspecific molecular variation for a member of *Spiroorchis*. Along those lines, nomina nuda GenBank sequences (nonu gens), i.e., GenBank sequences that are unaccompanied by robust morphological evidence or a museum-curated voucher specimen that underpins their taxonomic identity, should at minimum be treated with caution or perhaps not used at all in taxonomic and phylogenetic analyses. Authors using GenBank sequences should confirm how specimens were morphologically identified and cite the original work wherein those morphological characters were diagnosed.

The Pascagoula River is the largest undammed river in the continental United States (Dynesius and Nilsson, 1994; Benke and Cushing, 2005). A high diversity of aquatic and semiaquatic turtles live there (11 genera, 16 species; van Dijk et al., 2014; Powell et al., 2016), including some that are regarded as highly endemic.
For example, the Pascagoula map turtle (Graptemys gibbonsi Lovich and McCoy, 1992) and the yellow-blotched map turtle (Graptemys flavimaculata Cagle, 1954) are endemic to the Pascagoula River and its tributaries (Mississippi Natural Heritage Program, 2005; Lindeman, 2013; Selman and Qualls, 2009). Half of the Pascagoula River’s turtles are reported as turtle blood fluke hosts elsewhere, and 2 have been reported as hosts from the Pascagoula River: S. haematobius infecting the common snapping turtle, Chelydra serpentina (Linnaeus, 1758) (see Brooks [1979]), and S. scripta infecting the pond slider, Trachemys scripta (Thunberg in Schoepff, 1792) (see Olson et al. [2003]). The Pascagoula River’s fishes and amphibians likely harbor relatively pristine parasite assemblages; however, this hopeful condition may not remain as such indefinitely.

The construction of 2 dams is proposed on the lower Pascagoula River that would create 2 large lakes in George County, Mississippi. This massive project is pending public comment and an environmental impact statement from the Corps of Engineers. Dams in the southeastern United States have caused mass extinctions of particular gastropod snail species that serve as intermediate hosts for digeneans (e.g., Coosa River, northeastern Alabama: Bogan et al. [1995]; Neves et al. [1997]; Johnson et al. [2013]), which obviously have the potential to also extirpate parasite species that require those snails to complete their life cycles. To our knowledge, no study has provided before and after data on the effects of such dams on any parasite component community in a Coastal Plain river system. Given the diversity of parasite species that exploit mollusks and the high diversity of freshwater mollusks that range in the southeastern United States (Bogan et al., 1995; Neves et al., 1997; Johnson et al., 2013), such changes have almost certainly occurred despite our inability to document them a posteriori. The perceived pristine ecological status of the Pascagoula River should be reflected by a correspondingly rich parasite community, perhaps including some endemic parasite species at risk of being extirpated if conditions there change over time due to human influence. This includes endemic host species and their presumptively unique parasite component communities as well as more geographically wide-ranging but nonvagile host species that may have parasite component communities unique to the Pascagoula River. Intensive surveys of the parasites of this river system are ongoing (Curran et al., 2007, 2013; Curran and Overstreet, 2009; Tkach et al., 2013; Curran, unpublished data). In fact, parasitological exploration of the Pascagoula River’s fauna comprises a large proportion of the published natural history research being conducted there, e.g., a Web of Science search on keyword “Pascagoula River” returned 10 of 73 (14%) total records that comprise parasitology. Parasitological surveys of this ecosystem are important because parasites can indicate the status of ecosystems. It is seemingly inevitable that ecological parameters there will not remain as they are now.

ACKNOWLEDGMENTS

We thank Raphael Orélis-Ribeiro (Universidade Federal do Paraná, Curitiba, Brazil) for generating the 28S and 18S gene sequence for the new species, Tom Platt for donating his research collection to S.A.B., and Estefania Rodriguez (AMNH), Gabor Racz (HWML), Anna Philips, Chad Walter, and William Moser (all USNM) for loaning museum specimens. The present study is a contribution of the Southeastern Cooperative Fish Parasite and Disease Project and a now long-expired National Science Foundation Revisionary Systematics award to S.A.B. and K.H.M.

LITERATURE CITED

Curran, S. S., V. V. Tkach, and R. M. Overstreet. 2013. Molecular evidence of two cryptic species of *Homo-
lometron* (Digenea: Apocreadiidae) in freshwater fishes of the southeastern United States. Comparative Parasi-

Lindeman, P. V. 2013. The map turtle and sawback at-

Mississippi Natural Heritage Program. 2015. Listed species of Mississippi. Museum of Natural Science, Mis-
sippi Department of Wildlife, Fisheries, and Parks, Jackson, Mississippi. 3 p.

Platt, T. R. 1990. *Aphanospirorchis kirki* n. gen., n. sp. (Di-
genea: Spirorchidae), a parasite of the midland painted turtle, *Chrysemys picta marginata*, from northwestern Indiana, with comments on the proper spelling of the family name. Journal of Parasitology 76:650–652.

Platt, T. R. 1993. Taxonomic revision of *Spirorchis* MacCal-

Rambaut, A. 2009. FigTree v1.2.3 [Internet]. Ed-
inburgh, U.K.: Institute of Evolutionary Biol-

a: Schistosomatoidae) from musk turtles (Kinosterni-
idae: Sternomus) in Alabama and Florida rivers. Par-
asitology International 64:748–760.

tidae) and *Spirorchis* cf. *scripta* from chicken turtle, *Deirochelys reticularia*, (Emydidae), with an emenda-
tion and molecular phylogeny of *Spirorchis*. Folia Para-

Roberts, J. R., R. Orélis-Ribeiro, and S. A. Bullard. 2016. New genus of blood fluke (Dige-

Selman, W., and C. Qualls. 2009. Distribution and abun-

tory 48:165–221.

Stunkard, H. W. 1928. Observations nouvelles sur les tré-
atodes sanguicoles du genre *Vasotrema* (Spirorchidae)

